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acht speziellen Punktlagen (a)-(h) zur gleichen Kon- 
figmationslage. Von den 8! m6glichen Permutationen 
dieser Punktlagen ist wegen der Koppelung zwar nur 

zulfissig; das sind aber immerhin noch 1344. 
In diesem Zusammenhang sei auf eine Arbeit yon 

Boyle & Lawrenson (1973) hingewiesen, in welcher alle 
die Permutationen der Punktlagen explizit angegeben 
werden, welche einer Translation in der Automorphis- 
mengruppe entsprechen, alle fibrigen Permutationen 
aber unberficksichtigt bleiben. 

Die hier vorgelegte Arbeit beruht auf Unter- 
suchungen, die yon uns im Fachbereich Geowissen- 
schaften der Philipps-Universit~it Marburg mit Unter- 
stiitzung durch die Deutsche Forschungsgemeinschaft 
durchgefiihrt wurden. Der deutschen Forschungsge- 
meinschaft gilt daher unser besonderer Dank. 
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The influences of sample size and mosaic block size upon X-ray thermal diffuse scattering have been 
investigated. Surface and edge vibrational modes were incorporated into the Debye spectrum. Two 
additional terms, which depend on the surface/volume and edge-length/volume ratios, appear therefore 
in the expression for the scattered intensity. The TDS contributions of the volume and surface terms to 
the integrated Bragg intensity are calculated numerically. 

Introduction 

Various authors have performed studies of the thermal 
diffuse scattering contributions to X-ray reflexions. 
The most recent of this is the refined model of Walker 
& Chipman (1972). But in all of these studies, the in- 
fluences of mosaic particle size and sample size (in the 
case of powders the powder grain size) have been neg- 
lected. These influences become important for mosaic 
and grain sizes below_~ 250 A. 

The influence of particle size on the Debye-Waller 
factor has been studied by Schoening (1968), whose 
work is based on the complete counting of vibrational 
frequencies through the introduction of surface and 
edge terms into the Debye spectrum. These additional 
terms were used first by Bolt (1939), Maa (1939) and 
Roe (1941). 

The influences of the additional surface terms on the 
expression for the integrated one-phonon scattering of 
acoustic modes are discussed in the present paper. 
Furthermore, the effect of the size of coherent scatter- 
ing domains will be considered. 

It is useful to write the scattered X-ray intensity in 
terms of multiple-phonon processes: 

z00 OCIo0~) +1100 + . . . .  (1) 

I0(b) and Iz(b) are the zero- and one-phonon intensity 
functions, which can be written as: 

and 

where 

lo(b) = N/ VezJ(Ab) (la) 

Iz(b)=½ ~ Gkj{lo(b+k)+lo(b-k)} (lb) 
jk 

Gkj:47~2b z cos 2 ~kjkBT/6o~jNmel (lc) 

and J(Ab) is a three-dimensional d function. 

k =wave vector of the phonons, Ik[ = l / /~phon 
Ve~ =volume of the elementary cell 
me[ =mass of the elementary cell 
N =number of the elementary cells in the crystal 
COkj=frequency of a phonon of wave vector k and 

polarization j 
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T = absolute temperature 
k~ = Boltzmann constant 
b =vector in reciprocal space, Ib[ = 2  sin 0/2 
0o = Bragg angle 
Ab = b - b o  
~,~ = angle between polarization vector of phonon (k,j) 

with b. 

Introducing the density of states in k space, Ok, the 
sum over k in equation (lb) can be replaced by an 
integral: 

I~N/V~xO(Ab)+½ ~ I Gkj{lo(b+k)+ loqo-k)}QkdVk . 

(2) 

After integration, equation (2) becomes 

IocN/V=,O(Ab)+ N/V~, ~ GabjOab; (3) 
s 

Q~b is the density of states 0k for k = d b .  
Higher orders than one-phonon scattering have been 

neglected. In order to obtain the density of states, Qk, 
the modified Debye spectrum accounting for surface 
and edge effects is introduced (Maradudin, Montroll & 
Weiss, 1963): 

( 4rcVco 2 zcSco L ) 
g(co)dco= (2z0ac-------- ~ + 2(2r02c2 + ~ do); (4) 

V is the volume of the crystal, S its surface area and L 
the edge length. According to Schoening (1968) the e's 
can be related to an average velocity Cm which depends 
on the longitudinal and transverse acoustic phonon 
velocities ez and ct. 

The assumption of a linear-chain dispersion relation 
for the acoustic frequencies (Walker & Chipman, 1972) 
leads to the following equation for the frequencies: 

cojk~2~zgjklk[ with 9jk~-~ ~j sin (rckl2km)/(zckl2k,,,). (5) 

7j is the average velocity for small wave vectors. 
km is the radius of the first Brillouin zone, which has 

been replaced by a sphere of equal volume as the 
correct Brillouin zone. 

~j can be related to the c's by the following equations: 

~ :--- ¢3 , -2 

with 
fl~=(1 + 2c~/c~)/(1 + 2c]/ca)2/~-1"35 (5a) 

= "-t-2CalC a '~ l /a '~  1"80 (5b) flz (l+2cJct)/(1 u tJ - • 

The factors fl~ and t2 are not very sensitive to changes 
of the ratio cz/ct. In the range 1-5 _< cJct <_ 2.5 fll and/?2 
can be replaced by mean values as indicated in equa- 
tions (5a) and (5b). 

If g(k)dk is the number of states in a shell between 
k and k + dk, the density of states in k space is 

with 
Qk= V +  Sfl~/(Slkl) + Lf12/(32~zk z) 

g(k)dk = 4nkZokdk . 

(6) 

The contribution of one-phonon scattering to the 
integrated Bragg intensity 

If equation (6) is substituted in equation (3), the follow- 
ing expression for the scattered intensity is obtained: 

Ioc N/ Ve,6( Ab) 

+N/V,,  ~ G.~b.~[V+ Sfl,/(8Ab)+ Lf12/(32TcAb~)] . (7) 
J 

The sum over j can be replaced by a mean value and, 
for cubic crystals, can be approximated by 

( 4) b~kBT 1 + - - - -  
Z GAbj_ NVe,Ab 2 -c1~ o n -  c12 
J 

~lAbl 
x km sin 2kin 

o zcAb 
2k,,, t 

2 

dab ; (8) 

cu, c12 are the elastic constants. 
With equation (8), equation (7) becomes: 

/Gc0(Ab)+ ~ + 8nViAbl3 + -32~z2VAb 4 ; (9) 

% is a constant and independent of Ab and can be 
written as: 

o:v=~bN,,rl.28/3(--1 + 4 )1024 (9a) 
e l  1 e l  1 - -  ¢12 

where the following units have to be used: 

ckz in dyn/cm 2, kB in erg/°C, T in °K and b0 in A-1 

Because of the finite size of the particles, restrictions 
on the frequency spectrum must be introduced. The 
maximum phonon wavelength can be expressed in 
terms of the size of the sample: 

,~,max/2 ~ '  D (D = linear dimension of the sample). 

Except for the first term, equation (9) holds only for 
k0<lAbl<km with ko=l/D. Outside this range I -  
~(Ab) = 0. The function 6(Ab) is, however, defined for 
all values of Ab. 

In general, the sample shows a mosaic structure, 
which is mirrored in a broadening of the function 
described by equation (9). This broadening can be in- 
troduced by means of a convolution of equation (9) 
with a suitable function Ip, which is an average of the 
squared Fourier transform of a mosaic shape function. 

The average must be taken over all coherent domains 
(mosaics) in the sample. To account for this, equation 
(9) should be modified to 

I*=IpI .  (10) 

In the following, equation (10) will be applied to 
powder samples. In order to take care of the different 
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orientations of the powder grains, equation (10) must 
be integrated over a sphere of radius b centred at b = 0. 
The observed scattering intensity function for powder 
samples, I~¢ [i.e. apart from constant factors it is the 
function I* in equation (10) averaged over the powder 
grain orientations], becomes 

I~o oc s,  ~(Ab) + ~ + - -  fllo~vS 
8nVlAbl 3 

] dSb (11) + 32n2VAb 4 .I 

where dSb is the surface element of the sphere. It has 
to be born in mind that the second, third, and fourth 
terms are non-zero only in a restricted range (ko< 
IAbl -< k,,). 

With the approximation that the integration and 
convolution can be interchanged, 

Qv/0.33 

o.~. f f  , a,,, 
l I S l i s ' l / ~ "  

I I I s I s "  
I s S S / H  
I s .," s / / /  ! ,'" 

0 ,  n ..',.':.'/,/" 
I .," ,' .,'Z/" 
I ," / s'/~" 
- / . / / / /  

! ,"// ,4/," 
11 ,s'S 

o, II //,,,,7,/" 
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' ~do ' 2do 
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Fig. 1. Volume TDS. Q o as a function of Au. n = 6. 

curve k~, kg 
1 0.14. • .0.55 0 
2 0.14 5.77 x 10 -~ 
3 0.14 0 
4 0.14...0.55 5.77x 10 -4 
5 0.14. • .0.55 0 
6 0.55 5.77 X 10 - 3  
7 0"14 0 

O O  

4"55 x 10 3 

4"55 x 103 
4"55 x l0 s 
4"55 x l0 s 
4"55 x 103 
4"55 x 103 

~v 
-~bX- d &  

f11%S 1 3 Lfl2o~ v 1 
+- -~-V- I~  1-3~ dSb+ 3 2 ~ S ~ T b - ~ d S ~ ]  . (12) 

The area S* corresponds to the surface of the sphere 
of radius b, while ~ is the area on this sphere where 
ko < lAb] < k,,,. ~ accounts for the restricted magnitudes 
of the phonon wavelengths. 

I b 
Ab-ZdSb = n -~o In - -  

b2+b~-2bbo cos ~00 
b 2 q- b2o- 2bbo cos ~01 

b v 
= 7/: ~ ITDS (13a) 

l b 
IAbl-3dS~'=2n bo {(b2 +b2-2bb° cos ~0~) -~/2 

b s - ( b  E+b~-2bbo cos ~Oo)-~/2}=2n-~o ITDS (13b) 

S .~ Ab-4dSb = n ~ {(b 2 +b~-2bbo cos ~o~) -1 

b 
-(b2 +b~-2bbo coS ~Oo)-l}=n-~o I~.o s . (13c) 

The functions v ITDS, ISsD and ITEDS represent the main 
TDS-intensity dependence on Ab for the volume, sur- 
face and edge components. The factors nb/bo and 
2nb/bo, in (13a, ¢) and (13b) respectively, are much less 
dependent on Ab than the functions .tTD SIV'S'E. ISDs and 
I~os are additional terms, which have been introduced 
through the extension of the density of states Ok, equa- 
tion (6), with surface and edge terms considered in the 
vibrational spectrum, v ITDS, however, is the usual TDS 
intensity in the Debye theory. 

{ ~/k~4b~-(b2o-b 2 + k2m) 2 
tan (Do = b2-k2m + b~ for [Ab[ <km 

0 otherwise 

L-.2 2 2 b 2 ~/ko4bo-(bo- +-k2o) ~ 
tan ~0~ = b 2_ ko2 + b02 for lAb[ < ko 

0 otherwise. 

A suitable approximation for Ip can be introduced 
by assuming spherical coherent regions of mean radius 
.~ and polydispersity g, where the polydispersity of the 
spherical regions is defined by: 

g = ~ _  yz]uz/f . 

The double dashes indicate the mass statistical aver- 
ages. For the mass statistics a Maxwellian distribution 
has been assumed (Hosemann & Bagchi, 1962). The 
integration over dSo leads to the following functions: 

A C 31A - 7 
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ip = Is,IpdSb= 

with  

and  

47~ 2 

/ z=  --3-- 

nb In ( b + b o ) 2 + l / / z  for n = 4  
-~o (b - bo) z + 1//~ 

nb {exp [ - / 2 ( b -  boY] 
/zbo - e x p  [ -p (b+bo)q}  

for  n = ~  

nb 
/A(n - 2)12bo(n - 4)/2 {[1//x + ( b -  bo) 2] - ( .n  - z) 

- [1//z + (b + bo) 21 - ( . / z -  z) } 
for 4 < n < o o  

(13d) 

g =  

("+ 1'1-1  

]2 
F(n2___2_2) z - 1  . 

Final ly ,  wi th  the func t ions  *TDS~V'S'R in t roduced  t h r o u g h  
the defini t ion 

~v.s.E _ v.s.E " (b/bo)lTsD 1, (14a) * T D S  - -  

the scat tered in tens i ty  can be wri t ten  as:  

where 
Iso oci,, +  x,,igx,s +  JgDs + 

fl, So~o fleL~zo 
c q -  4V ' c~e- 32nV 

(14) 

A b a c k g r o u n d  correct ion has  to be pe r fo rmed  in order  
to take  care of  the finite range  of  the observable  re- 
flexions. I f  A b z - A b ,  is the exper imenta l ly  ob ta ined  
spread of  the peak,  the b a c k g r o u n d  func t ions  Fp and  
Fros can be in t roduced  by as suming  a l inear  back-  
g round .  

F -  ] (Ab , ) - i (Ab2)  ( A b - A b l ) + I ( A b l ) .  (15) 
A b l - A b z  

The rat ios  o f  the different  in tegra ted  T D S  c o m p o n e n t s  
to the integral  Bragg in tens i ty  in the range  A b l - A b 2  
are:  

QV/0.33 
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# # ; #  I 
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¢ #  
, /  

Fig. 2. Volume TDS. Q o as a function of Au. n = 7. 
Curve k~ k~ p* 

1 0"14" • .0-55 0 oo 
2 0"14 5.77 x 10 -3 3.95 × 10 3 

3 0"14 0 3"95 x 103 
4 0"55 5"77 x 10 -3 3"95 x 103 
5 0"55 0 3"95 x 103 

26o 

QV/0"33 
0.51- 7 

o.t 

~ -  ~,2 
l /  

I s  
Sl~ S 
l 

0.3 

0.2 

0.1 

16o 
Au/2.23 10 -2 

Fig. 3. Volume TDS. QV as a function of Au. n=8.  

Curve km k~ 
1 0"14" " "0"55 0 
2 0"14 5"77 x 10 -3 
3 0"14 0 
4 0"14"" "0"55 5"77x 10 -4 
5 0"14" " "0"55 0 
6 0"55 5"77 x 10 -3 
7 0"55 0 

O<3 

3"5 x 103 
3"5 x 103 
3"5 x lO s 
3"5 x lO s 
3"5 × 103 
3"5 x 103 

26o 
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I Ab2 ( # V , S , E  I:?V,S,~a d a b  
\ a T D  s - - . t T D  S ) 

ddbl  
= (16) 

EV'S'E @,s,E IAa2(~Ip_Fp)dAb 
dab 1 

In most cases, the contribution of the edge term is neg- 
ligible and therefore will not be considered further. 

With a new dimensionless coordinate u=Ab/bo in- 
troduced, equation (16) can be rewritten in a form 
which is more suitable for a general treatment: 

E V ' S = A v ,  s 

with 

f u2 (i;i)SS(~)- FVbSs(u)]du 
Ul 

I u 2 [ I p ( u ) - F p ( u ) ] d u  

Ul 

= A v , s Q  v,s  (17 )  

Av=o~bo, As=o~fllS/(4V) 

Fro(u) = In (1 + u) 2 + 1 - 2(1 + u) cos ~0o Ip(u) (18a) 
(1 +u)2+ 1-2(1 +u) cos ~0, 

i ~ D s ( U )  = ( [ ( 1  "Jl- U) 2 -[" 1 - 2 ( 1  -t-u) c o s  (fill - 1 / 2  

- [ (1  +u)2+ 1-2(1 +u) cos~oo]-llz}lv(u). (lSb) 

Qv/0-33 
0'5 

0.L 

0.3 

0.2 

0.1 

/ / / / "  
/ / /  / 

/ / /  ," 
/ / /  ," 

/ / /  ," 
/ / /  ," 

I / , "  / / / /  / 
/ / , ,  ,, 

/ / /  ," 
/I,I i" 

7 

' ld0 ' 2b0 
AU/2.23 10 -z 

Fig.  4. V o l u m e  T D S .  Q v as a f u n c t i o n  o f  Au. n = oo. 

C u r v e  k~, k~ it* 

1 0"14" • "0"55 0 
2 0-14 ."  "0"55 5 . 7 7 x  10 -3 
3 0"14" • "0"55 0 
4 0"14" • • 0"55 5"77 x 10 -4 

1"48 x 106" • "oo 
1"48 x 104 
1"48 x 10 4 
1"48 x 10 6 

In order to obtain the integrated contributions of the 
TDS terms to the integrated Bragg intensity, only the 
functions QV,S need to be calculated. Later, the proper 
parameters for Av and As for the individual sample and 
reflexion must be introduced. For the calculation of the 
functions QV,S, different sets of parameters have been 
used; the parameters being * * n,la ,ko,k*,Au=u2 
ld I . ( I t  ~" ~-- [lb2o, k ~  = k o / b o ,  k * m = k m / b o ) .  

The functions QV and log QS are plotted in Figs. 1-5 
as functions of Au for various sets of parameters, where 
for simplicity lull--lull. In Figs. 1-4, curves for differ- 
ent parameters n are plotted, i.e. n = 6, 7, 8, c~. In each 
figure different parameter sets (k~,k*m,lZ*), but with 
equal values of n, belong to the different curves. 

log QS 

103 

23 

/ I  

lo 

lO 

0 ' 6 0  ' 
&U/2.23 10 .2 

Fig. 5. Surface TDS. logQ~as a function ofAu. k~,= 0.14. • "0"55 

C u r v e  n k ;  p*  

1 6 " " o o 0  oo 
2 6 0 4 " 5 5 x  
3 7 0 3"95 x 
4 8 0 3"50 x 
5 oo 0 1 "48 x 
6 6 0 4 " 5 5 x  
7 8 0 3"50 x 
8 oo 0 1 "48 x 
9 6 5"77 x 10 -4 4"55 x 

10 8 5"77 x 10 -4 3"50 × 
11 oo 5 " 7 7 x  10 -4  1"48 x 
12 6 5"77 x 10 -3 4"55 x 
13 7 5"77 x 10 -3 3"95 × 
14 8 5"77 × 10 -3 3"50 x 
15 oo 5"77 x 10 -3 1"48 x 

10 3 
10 3 
10 3 
10 4 f i . ~ D = o o  
10 s 
10 5 
10 6 
10 s 
10 s 
10 6 
l0  s D / 2 = p  
l 0  s 
l 0  s 
10 4 

A C 31A - 7* 
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It can be seen that in the calculated range, the func- 
tion QS is independent of the radius of the reduced 
Brillouin zone of k~*. The surface term depends only 
on the polydispersity parameter n, the mosaic size par- 
ameter /z*, the sample size parameter k~, and the 
spread Au. The volume term is independent of k*~ only 
for n = oo. For high spreads Au, QV(Au) becomes linear 
in Au for all parameters. The volume component QV 
for the particular case of infinity grain and mosaic 
sizes is a linear function of Au, as can be seen in Figs. 
1--4. Deviations from the straight line can be found for 
finite grain and mosaic sizes for small spreads Au. The 
reason for this behaviour is that the Bragg peak has a 
spread bigger than the range of Au employed here. 
Therefore, for very small grain and mosaic sizes, Q" 
decreases with increasing Au until it goes through a 
minimum, and then it increases again becoming linear 
for large Au. The minimum occurs where the Bragg 
contribution, calculated over the spread Au, is nearly 
100% of the total Bragg contribution over the full 
spread Au=oo. Any further increase of Au does not 
affect the Bragg contribution. Increasing the grain and 
mosaic sizes shifts the position of the minimum to 
smaller Au values, until the minimum disappears. This 
typical behaviour can be seen for all calculated par- 
ameters n. 

The surface components QS are again most sensitive 
to the size of Au for small Au. Since the function i~Ds(U) 
[equation (18b)] decreases more rapidly with increasing 
Au than i~os(U) [equation (18a)], it can be expected 
that in extreme cases (Au and / t*  very small and k~ 
very big) the surface component may become domi- 
nant. For high Au spreads, the function QS becomes 
constant. The functions l~rDs and i v tend to zero when 
this happens. 

In this treatment the overlap contribution due to 
neighbouring reflexions has not been considered. This 
can be easily obtained by additional calculations of the 
QV,S corresponding to the proper range of the addi- 
tional reflexions which contribute to the intensity. In 
this case, the multiplicity of the individual reflexions 
and their relative weights should be considered. 

Table 1 provides a practical example for the calcula- 
tion of the TDS contributions. The 521 reflexion of 
tungsten powder has been investigated with the follow- 
ing sets of room-temperature parameters: 2(02-0~)= 1 ° 
and 4 °, n = c~ and 6, mean mosaic radii ~ = 25, 250 and 
c~ A and powder grain sizes D/2 = 25, 250 and c~ A. It 
can be seen that for small values of D/2=25  A and 
.~=25 A the surface contribution becomes comparable 
with the volume contribution, and for the spread 
2(02--01)=1 ° with n=oo,  then E s is bigger than E v 
(E s = 0.8 %, E ~ = 0.5 %). With increasing D, the surface 
contribution decreases. This is reasonable since the 
factor As depends on the surface/volume ratio. 

Table 1. TDS contributions for tungsten 521 powder 
reflexion at T=293°K 

2(02 -- 0t) 
D/2 [.A,] fi [AI [degrees] EV[%] E~[%] 

n = o o  I i = 6  n = o o  n = 6  

25 25 1 0"5 1.6 0.8 1"4 
25 25 4 2"5 3-5 2"1 2-6 

> 106 25 1 1"4 2"7 0 0 
> 10 6 25 4 3"5 4"5 0 0 
250 250 1 0"8 0"8 0"4 0"4 
250 250 4 3"5 3"5 0"7 0"7 

> 10 6 250 1 0"9 0"9 0 0 
> 10 6 250 4 3"7 3"7 0 0 
> 106 >250 1 0"9 0"9 0 0 
> 106 >250 4 3"7 3"7 0 0 

C o n c l u s i o n  

The contributions of surface effect and mosaic-block 
size terms to the thermal diffuse scattering have been 
considered. F o r  small powder grains (of the order of 
D/2 ~_ 25 .&) these influences cannot be neglected; here, 
an additional surface term, which can be introduced 
through the addition of surface vibrational modes to 
the Debye spectrum, becomes comparable with the 
usual volume term. Calculated correction terms for 
the surface influences have been plotted. Independently 
of the sample and the reflexion order, they can be used 
as corrections in many situations. The volume term 
shows a complicated dependence upon the grain size, 
the mosaic size and polydispersity. Although the 
plotted curves may be used for a correction of the 
volume TDS, large errors may occur in this proce- 
dure, and an individual calculation of the function QV, 
[equation (17)], would be preferable. 

The author wishes to thank Dr F. R. L. Schoening 
for the interest in this work, Dr A. B. Wolbarst for 
reading and correcting the manuscript, and Mrs K. 
Peach for the excellent preparation of the graphs. 
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